A Kruskal–Katona type theorem for integer partitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Central Limit Theorem for Integer Partitions

Abstract. Recently, Hwang proved a central limit theorem for restricted Λ-partitions, where Λ can be any nondecreasing sequence of integers tending to infinity that satisfies certain technical conditions. In particular, one of these conditions is that the associated Dirichlet series has only a single pole on the abscissa of convergence. In the present paper, we show that this condition can be r...

متن کامل

A Deza-Frankl Type Theorem for Set Partitions

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called blocks) of [n] whose union is [n]. Let B(n) denote the family of all set partitions of [n]. A family A ⊆ B(n) is said to be m-intersecting if any two of its members have at least m blocks in common. For any set partition P ∈ B(n), let τ(P ) = {x : {x} ∈ P} denote the union of its singletons. Also, let μ(P ) = [...

متن کامل

Integer Partitions

Let  denote the positive octant of the regular -dimensional cubic lattice. Each vertex (1 2     ) of  is adjacent to all vertices of the form (1 2      + 1     ), 1 ≤  ≤ . A -partition of a positive integer  is an assignment of nonnegative integers 12 to the vertices of , subject to both an ordering condition 12 ≥ max 1≤≤ 12+...

متن کامل

Large deviations for integer partitions

We consider deviations from limit shape induced by uniformly distributed partitions (and strict partitions) of an integer n on the associated Young diagrams. We prove a full large deviation principle, of speed p n. The proof, based on projective limits, uses the representation of the uniform measure on partitions by means of suitably conditioned independent variables.

متن کامل

A Product of Integer Partitions

I present a bijection on integer partitions that leads to recursive expressions, closed formulae and generating functions for the cardinality of certain sets of partitions of a positive integer n. The bijection leads also to a product on partitions that is associative with a natural grading thus defining a free associative algebra on the set of integer partitions. As an outcome of the computati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2013

ISSN: 0012-365X

DOI: 10.1016/j.disc.2013.06.001